Dome Roof Cone Volume Calculator - Calculate volume in litres, gallons, cubic feet, bbl, cubic meters
Dome Roof Cone Tank Volume Formula
Volume Calculation
The total volume of a dome roof cone tank is determined by summing the volumes of the cylindrical, conical, and dome sections:
Cylindrical Section Volume
The volume of the cylindrical section is given by:
\[ V_{\text{cylinder}} = \pi r^2 H_{\text{cyl}} \]
Where:
- r = Radius of the cylindrical section (diameter / 2)
- Hcyl = Height of the cylindrical section
Conical Section Volume
The volume of the conical section is given by:
\[ V_{\text{cone}} = \frac{\pi}{3} H_{\text{cone}} (br^2 + br \cdot tr + tr^2) \]
Where:
- Hcone = Height of the conical section
- br = Bottom radius (bottom diameter / 2)
- tr = Top radius (top diameter / 2)
Dome Section Volume
The volume of the dome section is calculated as a hemisphere:
\[ V_{\text{dome}} = \frac{2}{3} \pi r^3 \]
Where:
- r = Radius of the dome section (diameter / 2)
Total Volume
The total volume of the tank is:
\[ V_{\text{tank}} = V_{\text{cylinder}} + V_{\text{cone}} + V_{\text{dome}} \]
The filled volume of the tank depends on the height of the liquid level:
Case 1: If filled height ≤ height of the conical section:
\[ R_{\text{cut}} = br + \left(\frac{\text{H}_{\text{filled}}}{H_{\text{cone}}}\right) \cdot H_{\text{cone}} \cdot \left(\frac{tr - br}{H_{\text{cone}}}\right) \]
\[ V_{\text{filled}} = \frac{\pi}{3} \cdot \text{H}_{\text{filled}} \cdot (br^2 + br \cdot R_{\text{cut}} + R_{\text{cut}}^2) \]
Case 2: If filled height > height of the conical section:
\[ V_{\text{filled}} = V_{\text{cone}} + \pi \cdot tr^2 \cdot (\text{H}_{\text{filled}} - H_{\text{cone}}) \]
Where:
- Hfilled = Height of the liquid level
- Hcone = Height of the conical section
- br = Bottom radius (diameter / 2)
- tr = Top radius (diameter / 2)
Suppose the tank has the following dimensions:
- Bottom diameter = 10 m
- Top diameter = 6 m
- Cylindrical height = 5 m
- Conical height = 4 m
- Dome radius = 3 m
The total volume is calculated as:
1. \[ V_{\text{cylinder}} = \pi (5)^2 (5) = 125\pi \, \text{m}^3 \]
2. \[ V_{\text{cone}} = \frac{\pi}{3} (4) \left((5)^2 + 5 \cdot 3 + (3)^2\right) = \frac{\pi}{3} (4)(49) = \frac{196\pi}{3} \, \text{m}^3 \]
3. \[ V_{\text{dome}} = \frac{2}{3} \pi (3)^3 = 18\pi \, \text{m}^3 \]
Total Volume:
\[ V_{\text{tank}} = 125\pi + \frac{196\pi}{3} + 18\pi = \frac{659\pi}{3} \, \text{m}^3 \approx 690.8 \, \text{m}^3 \]
- How can I convert the tank volume to liters?
1 m³ = 1,000 liters. Multiply the calculated volume by 1,000 to convert to liters. - What if the dome section is not a perfect hemisphere?
Adjust the dome volume formula based on the actual shape (e.g., spherical cap or custom geometry). - Can I use this formula for non-circular tanks?
No, this formula is specific to circular tanks. For non-circular tanks, use appropriate formulas for the geometry.