Home Back

Escape Velocity Formula Calculator

\[ v_e = \sqrt{\frac{2GM}{r}} \]

1. What is the Escape Velocity Formula Calculator?

Definition: This calculator computes the escape velocity (\(v_e\)) required for an object to escape the gravitational pull of a celestial body, given its mass (\(M\)) and radius (\(r\)).

Purpose: It is used in astrophysics and space exploration to determine the minimum speed needed for spacecraft or objects to leave a planet or moon without further propulsion.

2. How Does the Calculator Work?

The calculator uses the following formula:

Formula: \[ v_e = \sqrt{\frac{2GM}{r}} \] where:

  • \(v_e\): Escape velocity (m/s, km/s, km/h, mph)
  • \(G\): Gravitational constant (\(6.674 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2}\))
  • \(M\): Mass of the celestial body (g, kg, metric tons, solar masses)
  • \(r\): Radius of the celestial body (m, km, cm, mm)

Unit Conversions:

  • Mass:
    • 1 kg = 1 kg
    • 1 g = 0.001 kg
    • 1 metric ton (t) = 1000 kg
    • 1 solar mass (\(M_\odot\)) = \(1.989 \times 10^{30} \, \text{kg}\)
  • Radius:
    • 1 m = 1 m
    • 1 km = 1000 m
    • 1 cm = 0.01 m
    • 1 mm = 0.001 m
  • Velocity:
    • 1 m/s = 1 m/s
    • 1 km/s = 1000 m/s
    • 1 km/h = 0.277778 m/s
    • 1 mph = 0.44704 m/s

Steps:

  • Enter the mass in g, kg, metric tons, or solar masses (default is \(5.972 \times 10^{24} \, \text{kg}\), Earth’s mass, step size 0.00001).
  • Enter the radius in m, km, cm, or mm (default is 6371000 m, Earth’s radius, step size 0.00001).
  • Convert mass and radius to kg and m, respectively.
  • Calculate the escape velocity using \(v_e = \sqrt{\frac{2GM}{r}}\).
  • Convert the velocity to the selected unit.
  • Display the result, using scientific notation if the absolute value is less than 0.001, otherwise rounded to 2 decimal places.

3. Importance of Escape Velocity Calculation

Calculating escape velocity is crucial for:

  • Space Exploration: Determining the speed required for spacecraft to leave Earth or other celestial bodies.
  • Astrophysics: Understanding the dynamics of celestial bodies, such as planets, moons, and stars.
  • Rocket Design: Ensuring rockets have sufficient velocity to escape gravitational pull for missions to space.

4. Using the Calculator

Examples:

  • Example 1: Calculate the escape velocity of Earth with mass \(M = 5.972 \times 10^{24} \, \text{kg}\), radius \(r = 6371000 \, \text{m}\), in m/s:
    • Enter \(M = 5.972 \times 10^{24} \, \text{kg}\), \(r = 6371000 \, \text{m}\).
    • Escape velocity: \(v_e = \sqrt{\frac{2 \times 6.674 \times 10^{-11} \times 5.972 \times 10^{24}}{6371000}} \approx 11186.47 \, \text{m/s}\).
    • Result: \( \text{Escape Velocity} = 11186.47 \, \text{m/s} \).
  • Example 2: Calculate the escape velocity of the Sun with mass \(M = 1 \, M_\odot\), radius \(r = 696000 \, \text{km}\), in km/s:
    • Enter \(M = 1 \, M_\odot\), \(r = 696000 \, \text{km}\).
    • Convert: \(M = 1.989 \times 10^{30} \, \text{kg}\), \(r = 696000000 \, \text{m}\).
    • Escape velocity: \(v_e = \sqrt{\frac{2 \times 6.674 \times 10^{-11} \times 1.989 \times 10^{30}}{696000000}} \approx 617747.76 \, \text{m/s} = 617.75 \, \text{km/s}\).
    • Result: \( \text{Escape Velocity} = 617.75 \, \text{km/s} \).

5. Frequently Asked Questions (FAQ)

Q: What is escape velocity?
A: Escape velocity is the minimum speed needed for an object to escape the gravitational pull of a celestial body without further propulsion.

Q: Why is the gravitational constant important?
A: The gravitational constant (\(G\)) determines the strength of the gravitational force between two masses, essential for calculating escape velocity.

Q: What happens if the velocity is less than the escape velocity?
A: If the velocity is less than the escape velocity, the object will not escape the gravitational pull and will eventually fall back to the surface.

Escape Velocity Formula Calculator© - All Rights Reserved 2025